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Abstract

Background: Dietary biomarkers may complement dietary intake assessment made by dietary questionnaires. We
developed an a-posteriori dietary biomarkers score based on Mediterranean diet food groups and evaluated its
association with mortality.

Methods: 642 participants (56% female), aged ≥65 years, with complete data on dietary biomarkers were followed
during 20 years in the InCHIANTI cohort study (Tuscany, Italy). The main outcomes were all-cause, cardiovascular,
and cancer mortality. Dietary biomarkers were selected from literature and from correlation analyses with dietary
intakes of Mediterranean diet food groups in the study. The baseline levels of the following dietary biomarkers were
chosen: urinary total polyphenols and resveratrol metabolites, and plasma carotenoids, selenium, vitamin B12,
linolenic, eicosapentaenoic and docosahexaenoic acids, and the mono-unsaturated/saturated fatty acid ratio.
Associations of the Mediterranean diet score using dietary biomarkers and a validated food frequency questionnaire
(FFQ) (as tertiles) with mortality were assessed through Cox regression.

Results: During the 20-year follow-up [median (Q1–Q3), 14 (8–18) years], and 435 deaths occurred (139 from
cardiovascular diseases and 89 from cancer-related causes). In the fully adjusted models, the dietary biomarker-
Mediterranean diet score was inversely associated with all-cause (HRT3vs.T1 0.72; 95%CI 0.56–0.91) and cardiovascular
(HRT3vs.T1 0.60; 95%CI 0.38–0.93), but not with cancer mortality. Associations between the FFQ-Mediterranean diet
score and mortality were not statistically significant.

Conclusions: A greater adherence at baseline to a Mediterranean diet assessed by a dietary biomarker score was
associated with a lower risk of mortality in older adults during a 20-year follow-up. The measurement of dietary
biomarkers may contribute to guide individualized dietary counseling to older people.
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Background
In 2018, there were 101.1 million persons aged >65 years
(19.7%) living in Europe. In 2050, estimations predict an
increase up to 149.2 million of older adults, which will
represent almost 30% of the overall population [1]. Strat-
egies to promote healthy aging are one of the pillars to
minimize the health care and socio-economic impact of
the increasing proportion of older adults in Europe [2].
Healthy aging can help to reduce the burden of chronic
diseases, disability, and increasing health expenditure re-
lated to a longer life expectancy of older adults [3, 4].
A healthy diet is considered one of the fundamental

factors to achieve healthy aging [5]. Indeed, a growing
body of epidemiological evidence shows that the Medi-
terranean diet (MD) may delay or prevent frailty, cogni-
tive decline, and the onset of many chronic diseases in
older subjects [6–9]. Furthermore, several observational
studies, including the European Prospective study into
Cancer and Nutrition (EPIC)-elderly study, a cohort of
74,607 men and women aged ≥60 years, have shown in-
verse associations between a greater adherence to differ-
ent MD scores (MDS), in both the Mediterranean and
non-Mediterranean countries, and total mortality [8].
Diverse modifications or adaptations of the original

MDS, initially developed by Tricophoulou et al. [10],
have been applied to evaluate relationships between MD
and health outcomes [11]. However, to date, adherence
to MD has been almost exclusively assessed using diet-
ary questionnaires, such as 24-h recalls and food fre-
quency questionnaires (FFQ), which are susceptible to
random and systematic errors in estimating dietary in-
take [12]. In addition, age-related changes in the diges-
tion and absorption of foods and nutrients could
introduce further bias into the accurate assessment of
the relationships between dietary intakes and health out-
comes in older adults. In our previous analyses from the
Invecchiare nel Chianti (InCHIANTI) study, no associ-
ation was observed between either dietary total polyphe-
nol or polyunsaturated fatty acid (PUFA) intakes and all-
cause mortality. However, statistically significant inverse
associations were found with their dietary biomarkers:
total urinary polyphenols [13] and serum PUFA concen-
trations [14], respectively. Both dietary biomarkers are
directly related to key features of a MD pattern. Total
urinary polyphenol concentrations positively correlate
with plant-based foods, such as vegetables, fruits, and
nuts [15], while plasma PUFA levels positively correlate
with fish and seafood consumption [16]. Thus, the use

of dietary biomarkers may improve the estimations of
MD exposure during a long-term follow-up [17]. Other
relevant candidates to be included as a dietary biomarker
in a panel correlated with MD are plasma levels of carot-
enoids and selenium [18, 19]. In particular, total carot-
enoids have been shown as a relevant dietary biomarker
for the consumption of vegetables, fruits, cereals, and
nuts significantly associated with their health-promoting
effects [19]. Recently, Li et al. captured a metabolomics
signature related with dietary MDS (based on 67 en-
dogenous metabolites) that was inversely associated with
incident cases of cardiovascular disease (CVD) in a
Spanish and 3 US cohorts, even after adjustment for the
dietary MDS from it was developed [20]. These findings
give further support to the hypothesis that biomarkers
are better correlated with the overall health-promoting
effects of MD.
The current research aims at developing a dietary bio-

marker panel based on key MD food groups in the
population from the InCHIANTI study and investigating
its long-term association with all-cause, CVD, and can-
cer mortality. We also compared mortality prediction
using dietary biomarker-MDS and FFQ-MDS.

Methods
Study design
The InCHIANTI study is an ongoing prospective cohort
of a representative sample of older adults living in the
Chianti geographic area (Tuscany, Italy). It was designed
to evaluate factors that influence mobility and disability
in late adulthood [21]. Details of the InCHIANTI study
have been previously published [21]. Participants were
recruited in 1998–2000 and were invited every 3 years to
a follow-up visit. The Italian National Institute of Re-
search and Care of Aging Ethical Committee approved
the study protocol, and all participants signed an in-
formed participation consent.
The current study was conducted and reported in ac-

cordance with the Strengthening the Reporting of Ob-
servational Studies in Epidemiology-Nutritional
Epidemiology (STROBE-NUT) guidelines (Additional
file 1. Supplementary Table S1, [22]).

Study population
At baseline, 1155 subjects aged ≥65 years agreed to par-
ticipate, with a participation rate of 91.7%. Out of these,
participants who had missing data in the FFQ (n=16), in
any of the selected dietary biomarkers (n=472) or
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covariates of interest (n=21), were excluded. The major
cause of missing data in dietary biomarkers was the fail-
ure to complete the baseline 24h urine collection.

Dietary assessment
Habitual dietary intake was assessed at baseline by
trained interviewers using the Italian version of the FFQ
developed and validated in the EPIC-Italy study [23].
This questionnaire asked how often (daily, week,
monthly) the consumption of 198 food and beverages
items in the past year, considering its respective portions
sizes. Daily intake of energy, macronutrients, and micro-
nutrients was estimated from the dietary questionnaire
using a specific software developed for the EPIC study
[24]. For the current analysis, dietary data were available
at baseline, 3, 6, and 9 years of follow-up.

Dietary score of the Mediterranean diet
Adherence to a dietary MDS was computed using an 18-
point linear scale that incorporated 9 key components of
the diet. Each component was divided into tertiles of in-
takes, and a score of 0, 1, and 2 was assigned to the first,
second, and third tertiles of intake for the 6 components
presumed to fit the MD: vegetables, legumes, fruits and
nuts, cereals, fish, and ratio monounsaturated fatty acids
(MUFA)/saturated fatty acids (SFA). Alcohol was scored
as a dichotomous variable, assigning 2 for moderate con-
sumers (range 5–25 g/days for women and 10–50 g/days
for men) and 0 for subjects above or below the sex-
specific range, including teetotallers. The scoring was
inverted for the 2 components presumed to not fit the
MD: total meat and dairy products. The overall adher-
ence to MDS from dietary intakes (FFQ-MDS) was cal-
culated for each subject as the sum of the values from
each component, which resulted in a score between 0
(lowest adherence) and 18 (highest adherence) [25].

Nutritional biomarker assessment
For this study, the measurement of dietary biomarkers
was only available at baseline. Plasma carotenoids were
measured using high-performance liquid chromatog-
raphy (HPLC). Total carotenoids were calculated as the
sum of α-carotene, β-carotene, β-cryptoxanthin, lutein,
zeaxanthin, and lycopene in micromoles per liter (μmol/
L). Within-run and between-run coefficients of variation,
respectively, were 7.3% and 9.6% for α-carotene, 4.5%
and 5.4% for β-carotene, 2.7% and 3.5% for β-
cryptoxanthin, 2.6% and 7.1% for lutein, 6.2% and 6.8%
for zeaxanthin, and 7.5% and 7.8% for lycopene [26, 27].
Selenium concentration (μmol/L) at baseline was mea-

sured by graphite furnace atomic absorption spectrom-
etry with an Analyst 600 with Zeeman background
correction (Perkin Elmer, Norwalk, CT). For baseline
measurements, the instrument was calibrated daily by

using known plasma selenium standards (UTAK Labora-
tories Inc., Valencia, CA). Within-run and between-run
CVs were 3.1% and 7.1%, respectively [28].
Plasma fatty acids (FAs) were measured by gas chro-

matography (HP-6890, Hewlett-Packard, Palo Alto, CA,
USA) with a fused silica capillary column (30 m × 0.25
mm internal diameter, HP-225 from Hewlett-Packard,
Palo Alto, CA, USA). Total lipids were extracted from
0.15 mL of the plasma by using the procedure of Folch
(1957). A known amount (50 μg) of heptadecanoic acid
(C17:0, Sigma Chemical Co., St. Louis, MO, USA) was
added to each sample before extraction as an internal
standard. Fatty acid methyl esters (FAMEs) were pre-
pared through transesterification using Lepage and Roy’s
method, modified according to Rodriguez-Palmero et al.
(1998). FAMEs were identified by comparison with pure
standards (Nu-Chek Prep, Inc., Elysian, MN, USA), and
peaks were identified by comparison with standard mix-
tures of fatty acids. For quantitative and qualitative ana-
lysis of fatty acids as methyl esters, calibration curves for
FAME (ranging from C14:0 to C24:1) were prepared by
adding six increasing amounts of individual FAME stan-
dards to the same amount of internal standard (C17:0;
50 μg). The correlation coefficients for the calibration
curves of 20 fatty acids were in all cases higher than
0.998 in the range of concentrations studied. The
amount of plasma fatty acids (ranging from C14:0 to
C24:1) was quantified based on the amount of FAME in-
ternal standard (C17:0) that was recovered. The coeffi-
cient of variation for all fatty acids was on average 1.6%
for intraassay and 3.3% for interassa y[29].. The percent-
age of values below the limit of detection were 33% for
C24:0 (tetracosanoic acid), 14% for C20:0 (eicosanoic
acid), 5% for C22:1 n-9 cis (docosenoic acid), and 3% for
C22:0 (docosanoic acid). In these cases, samples were
assigned with the minimum detectable value (0.15 μM)
Serum vitamin B12 was measured at baseline using by

radioligand-binding assay (SimulTrac-SNB Radio- assay;
ICN Pharmaceuticals). The minimum detectable con-
centrations were 75 ng/L for vitamin B12, and the
intraassay and interassay CVs were 11% and 12%, re-
spectively [30].
In 24h urine samples, total polyphenol concentration

was measured by the Folin-Ciocalteau assay after a
solid-phase clean-up which allows the elimination of
interfering substances that could react with the F-C
assay, as described previously [31]. Total polyphenol
concentrations were expressed as milligrams of gallic
acid equivalents (GAE) per 24-h urine. Phase II resvera-
trol metabolites were measured by a liquid
chromatography-tandem mass spectrometry (LC-MS/
MS) as previously described [32]. Briefly, 1mL of urine
with the internal standard was loaded into a previously
equilibrated Oasis (Waters) HLB (hydrophilic-lipophilic-
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balanced) solid-phase extraction 96-well plate (30 mg).
Urinary resveratrol metabolites were eluted with acid-
ified methanol solution and ethylacetate. After evapor-
ation, samples were reconstituted with 100 μL of the
mobile phase and then analyzed by liquid chromatog-
raphy (PerkinElmer S200) coupled to a triple-
quadrupole mass spectrometer (API3000; AppliedBio-
systems). Intra-batch and inter-batch coefficients of vari-
ation were less than 10.5% and less than 10.7%, respect-
ively [32]. Both plasma and urinary dietary biomarkers
were already validated against dietary intake measure-
ments in the InCHIANTI study [28–31, 33, 34]. In the
case of urinary resveratrol, 31% of the samples had
values below the limit of detection. These belonged
mostly to teetotallers (56%) and participants who did not
consume wine (26%). A zero value was assigned to all
these samples.

Biomarker score of the Mediterranean diet
The following dietary biomarkers were considered: total
carotenoids (calculated as the sum of α-carotene, β-
carotene, β-cryptoxanthin, lutein, zeaxanthin, and lyco-
pene), selenium, linoleic acid, eicosapentaenoic (EPA)
and docosahexaenoic acids (DHA), MUFAs [calculated
by summing of the following fatty acids: C14:1 n-9 cis
(myristoleic acid), C16:1 n-7 cis (palmitoleic acid), C18:1
n-9 cis (oleic acid), C18:1 n-7 trans (octadecenoic acid),
C20:1 n-9 cis (11-eicosenoic), C22:1 n-9 cis (docosenoic
acid), and C24:1 n-9 cis (tetracosenoic acid)], SFAs [cal-
culated as the sum of C14:0 (myristic acid), C16:0 (pal-
mitic acid), C18:0 (stearic acid), C20:0 (eicosanoic acid),
C22:0 (docosanoic acid), and C24:0 (tetracosanoic acid)],
and vitamin B12.
Similar to the FFQ-MDS, the dietary biomarker-MDS

was computed using an 18-point linear scale that incor-
porated a dietary biomarker from 9 key components of

the diet. From the available measurements in the
InCHIANTI database, we selected those that were sug-
gested in previous literature as a dietary biomarker of
the key MD food groups [16, 18, 35–40] and in addition
were significantly associated with dietary intake data in
the present study (shown in Table 1). Dietary bio-
markers for vegetables, legumes, fruits and nuts, cereals,
fish, and olive oil were ranked and divided by tertiles. A
score of 0, 1, and 2 was assigned to the first, second, and
third tertiles of dietary biomarker, respectively. Resvera-
trol metabolites as a dietary biomarker of alcohol con-
sumption were scored as a dichotomous variable,
assigning 2 for moderate consumers (range of values
corresponding to wine consumption; 125–375 g/day for
men and 50–250 g/days for women; in the present
population 589–14,557 nmol/24h for men and 1–11,125
nmol/24h for women) [39] and 0 for subjects above or
below the sex-specific range, including teetotallers. The
wine was the major contributor to alcohol intake (88%)
in this older Mediterranean population. The scoring was
inverted for the SFA and vitamin B12 tertiles, represent-
ing meat and dairy products, respectively. Dietary
biomarker-MDS ranged from 0 to 18, indicating low to
high adherence.

Genetic factors related with mortality and parental
longevity score
Overnight fasted blood samples were used for genomic
DNA extraction as previously described [41]. Illumina
Infinium HumanHap 550K SNP arrays were used for
genotyping of the following single nucleotide poly-
morphism (SNP)s: APOE ε4 (using the rs429358 and
rs7412 SNPs), rs1421783 MAT2B, rs6997892 WRN,
rs10817931 TRIM32, rs2684766 IGF1R, and rs11630259
IGF1R [42]. The parental longevity score was created
from the parental age at death or current age (if alive) as

Table 1 Mediterranean diet adherence score (MDS) by dietary components and biomarkers

Score MDS Spearman’s
rank
correlation
coefficient

Dietary components (FFQ) Dietary biomarkers (dBMK)

Tertiles (0,1,2) Vegetables
Legumes
Fruits and nuts
Cereals

Total polyphenols
Carotenoids
Linolenic acid
Selenium

0.170 (P<0.001)

Tertiles (0,1,2) Fish EPA+DHA 0.177 (P<0.001)

Tertiles (0,1,2) MUFA/SFA MUFA/SFA 0.229 (P<0.001)

Tertiles (0,2,0) Alcohol Resveratrol 0.668 (P<0.001)

Tertiles (2,1,0) Meat SFA 0.109 (P=0.005)

Tertiles (2,1,0) Dairy products Vitamin B12 0.135 (P=0.001)

Total score (0–18) All dietary components All biomarkers 0.263 (P<0.001)

MDS Mediterranean diet adherence score, FFQ food-frequency questionnaire, EPA eicosapentaenoic acid, DHA docosahexaenoic acid, MUFA monounsaturated fatty
acids, SFA saturated fatty acid
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described previously [43]. Briefly, a normal curve using a
non-linear least square regression was used to determine
the modal age (M) of death for each parent. They were
then categorized as short-lived if M was less than M− 1
standard deviation (mothers 61–76 years and fathers
46–74 years), intermediate as M± 1 standard deviation
(mothers 77–91 years and fathers 75–87 years), and
long-lived (mothers: older than 91 years and fathers:
older than 87 years).

Outcome assessment
Data on 20-year mortality were collected using the Mor-
tality General Registry maintained by the Tuscany Re-
gion, as well as death certificates delivered after
participants’ decease to the registry office of the munici-
pality of residence [13]. Cardiovascular mortality, based
on the underlying cause of death, was defined as any
cardiovascular mortality coded by the 9th Revision of
the International Classification of Diseases (ICD-9, codes
390-459). Cancer mortality was defined as any mortality
related to known cancer (coded 140 to 239 by the ICD-
9). Other mortality causes (also coded by ICD-9) in-
cluded respiratory system diseases; unknown causes; in-
jury and poisoning; nervous system and sense organ
diseases; endocrine, nutritional and metabolic diseases,
and immunity disorders; mental disorders; digestive sys-
tem diseases; symptoms, signs, and ill-defined condi-
tions; infectious and parasitic diseases; blood and blood-
forming organ diseases; and musculoskeletal system and
connective tissue diseases. Cases lost during follow-up
(i.e., emigration or refusal to participate) were censored
using the date of the last contact.

Other main baseline covariates assessment
Covariates were selected a priori on the basis of previ-
ously reported associations with both MD and mortality
[12, 15, 37]. Trained interviewers administered standard-
ized questionnaires on sociodemographic and lifestyle
variables including age, sex, and years of education.
Smoking habits were self-reported, and participants were
classified into never smokers, former smokers, and
current smokers. Physical activity was evaluated using a
structured questionnaire specifically developed and vali-
dated for the InCHIANTI study. The questionnaire re-
quired that the participant provide data on past and
current physical activity. The details of the questionnaire
have been previously reported [44]. Physical activity was
coded into the following categories: inactive or sedentary
(physical activity <2 h/week; i.e., walking), light physical
activity (2–4 h/week), and moderate-high physical activ-
ity (light-intensity activity >4 h/week or moderate-
intensity activity 1–2 h/week; i.e., swimming) [44].
Height and weight were measured, and body mass index
(BMI) was computed into kg/m2. Comorbidities

included in this analysis were diabetes mellitus (type 1
or type 2), hypertension (HT), chronic obstructive pul-
monary disease (COPD), cardiovascular disease (CVD,
including angina, myocardial infarction, congestive heart
failure, and stroke), impaired renal function (glomerular
filtration rate <60 ml/min), Parkinson’s disease, demen-
tia, and cancer. They were defined using standard clin-
ical definitions by combining information from self-
reported physician diagnoses, pharmacological treat-
ments, medical history, clinical examinations, and blood
tests [45].

Statistical analysis
Descriptive analysis of baseline characteristics was pre-
sented as mean (standard deviation) for normally distrib-
uted variables or median (25th and 75th percentiles) for
variables that deviated from the normal distribution.
Spearman rank correlation analyses were performed to
examine the relations between proposed dietary bio-
markers and MD diet food groups and between FFQ-
MDS and dietary biomarker-MDS. The final sum of
both scores was divided into population tertiles to
achieve categories with a similar number of participants
in each group. Cut-offs for FFQ-MDS tertiles were ≤7,
8–10, and ≥11 and for dietary biomarker-MDS tertiles
≤8, 9–10, and ≥11. The squared-weighted Kappa coeffi-
cient was calculated as a measure of the agreement be-
tween FFQ-MDS and dietary biomarker-MDS tertiles.
Baseline characteristic comparisons across the FFQ-
MDS and dietary biomarker-MDS tertiles were assessed
using generalized linear models adjusted for age and sex.
Cox proportional hazard models were used to evaluate

the associations between tertiles of FFQ-MDS or base-
line dietary biomarker-MDS and all-cause, cardiovascu-
lar, and cancer mortality. The base model was adjusted
for age (continuous) and sex. The final model was add-
itionally adjusted for BMI (continuous); years of educa-
tion (continuous); smoking status (3 categories); physical
activity (3 categories); impaired renal function, diabetes
mellitus, HT, COPD, CVD, cancer, dementia, and Par-
kinson’s disease (dichotomous); and energy intake (con-
tinuous). Similarly, each component of the dietary
biomarker-MDS (as tertiles) was individually tested in
the fully adjusted model. Tests for linear trends were
performed by assigning ordinal scores to the tertiles. For
linear dose-response plots, Cox regression models were
carried out with dietary biomarker MDS or FFQ-MDS
as continuous variables using the “rms” R package devel-
oped by Frank Harrell [46].
Interactions between FFQ-MDS and dietary

biomarker-MDS (as tertiles) and age (< or ≥80years),
sex, BMI categories (< 25 kg/m2, 25–30 kg/m2, and >30
kg/m2), smoking status (never, former, and current
smokers), HT, CVD, impaired renal function, diabetes
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mellitus, COPD, and cancer in relation to total, cardio-
vascular, and cancer mortality were evaluated in the fully
adjusted model using the likelihood ratio test. Sensitivity
analyses were run after the exclusion of participants who
died in the first 2 years of the follow-up, or participants
using dietary supplements or lipid-lowering medications.
In all Cox models, proportional hazard assumption was
tested by visual inspection of the plots based on the
Schoenfeld residuals and they were satisfied.
In addition, to better understand genetically predis-

posed mortality risks, we further adjusted the Cox re-
gression models for SNPs with previously reported
associations with mortality [42]: APOE ε4 (using the
rs429358 and rs7412 SNPs), rs1421783 MAT2B,
rs6997892 WRN, rs10817931 TRIM32, rs2684766 IGF1R,
rs11630259 IGF1R, and a parental longevity score.
Linear mixed models were used to check for differ-

ences in the FFQ-MDS during the repeated measures of
the study using individual-specific random effects. Fixed
categorical factors were interview number (4 levels: base-
line, 3, 6, and 9 years of follow-up) and sex, and continu-
ous covariates were age and energy intake. Mixed effect
Cox regression models with time-dependent covariates
were used to test the FFQ-MDS relationship with all-
cause, cardiovascular, and cancer mortality including the
dietary data collected at baseline, 3, 6, and 9 years of
follow-up in the base and the fully adjusted models.
SPSS statistical software 25.0 (IBM, USA) and R ver-

sion 3.2.3 (R Foundation for Statistical Computing,
Austria) were used for all statistical analyses. P values
(two-tailed) <0.05 were considered statistically
significant.

Results
Descriptive analysis
Out of the 1155 participants surveyed at baseline, 642
[357 women and 285 men, with a mean (SD) age of 74±
7 years], were included in the study (Fig. 1). The main
cause of exclusion from the study was not collecting 24h
urine specimens (472 out of 513). These 513 participants
were slightly older (77 vs. 74 years), with fewer years of
education (5.1 vs. 5.4) and showed a higher prevalence
of low physical activity (33% vs. 17%), dementia (11.3%
vs. 3.7%), and Parkinson’s disease (2.2% vs. 0.8%), as well
as lower prevalence of HT (48% vs. 63%) than the 642
participants included in this study (all p<0.05). Among
the 642 selected participants, HT and impaired renal
function were the most common comorbidities at base-
line with a prevalence of 63% and 39%, respectively
(Table 2), followed by CVD (23%) and diabetes mellitus
(14%).
The correlations among dietary components of FFQ-

MDs and concentrations of a dietary biomarker in the
population are presented in Table 1. For the dietary

biomarker-MDS, we grouped the categories of vegeta-
bles, fruits and nuts, legumes, and cereals because the
selected dietary biomarker (i.e., total polyphenols and ca-
rotenoids) were ubiquitously distributed among these
food groups. Alcohol intake in the FFQ-MDS and urine
resveratrol in the dietary biomarker-MDS were highly
correlated. The total FFQ-MDS (0-18) was moderately
correlated with the dietary biomarker-MDS (r=0.26),
and the level of agreement between the classifications of
FFQ-MDS and dietary biomarker-MDS tertiles was rela-
tively low [squared-weighted Kappa coefficient (95% CI)
= 0.218 (0.164–0.272)].
The characteristics of the study population categorized

by dietary biomarker-MDS and FFQ-MDS tertiles are
shown in Table 2. Participants in the highest tertile of
both dietary biomarker-MDS and FFQ-MDS were youn-
ger and more likely to have higher energy intake and be-
ing more physically active than those in the lowest
tertile. In addition, participants in the highest dietary
biomarker-MDS tertile showed a lower proportion of
current smokers and diabetes mellitus at baseline, while
subjects in the highest FFQ-MDS tertile were predomin-
antly men compared to those at the lowest tertile. Diet-
ary intakes of food groups and concentrations of dietary
biomarkers according to dietary biomarker-MDS and
FFQ-MDS tertiles are shown in Additional file 1, Sup-
plementary Tables S2 and S3, respectively.

Association between Mediterranean diet exposure and
mortality
During the 20 years of follow-up (median 14 years, Q1–
Q3: 8–18 years), 435 deaths occurred (139 attributed to
CVD and 85 to cancer-related causes). In the base
models, a greater adherence to dietary biomarker-MDS
at baseline was significantly associated with a lower all-
cause mortality (HRT3vs.T1 0.66; 95%CI 0.52, 0.83), and
this association remained statistically significant in the
fully adjusted model (HRT3vs.T1 0.72; 95%CI 0.56, 0.91)
(Fig. 2, and Additional file 1, Supplementary Table S4).
Moreover, the dietary biomarker-MDS showed a linear
dose-response relationship with overall mortality [(HR
per unit increase 0.96; 95%CI 0.83, 0.99); Additional file
1, Supplementary Table S4 and Supplementary Fig S1].
The FFQ-MDS was inversely, but not significantly, asso-
ciated with all-cause mortality either in the base model
(HRT3vs.T1 0.91; 95%CI 0.70, 1.19) or in the fully adjusted
model (HRT3vs.T1 0.90; 95%CI 0.69, 1.19) (Fig. 2, and
Additional file 1, Supplementary Table S4). Similarly, no
linear association was observed between FFQ-MDS and
overall mortality [(HR per unit increase 1.01; 95%CI
0.97, 1.05); Additional file 1, Supplementary Table S4
and Supplementary Fig S1].
Each component of the dietary biomarker-MDS at

baseline was individually tested for its relationship with

Hidalgo-Liberona et al. BMC Medicine          (2021) 19:280 Page 6 of 13



overall mortality (Fig. 2, and Additional file 1, Supple-
mentary Table S1). Baseline urinary total polyphenols
were significantly and inversely associated with all-cause
mortality in the fully adjusted model (HRT3vs.T1 0.77;
95%CI 0.60, 0.98, p=0.036). Plasma concentrations of ca-
rotenoids (p=0.076), selenium (p=0.068), and plasma
SFA levels (p=0.059) were negatively associated with
overall mortality, but without achieving statistical signifi-
cance. Moreover, a linear inverse association with all-
cause mortality was observed for linolenic acid (HR per
log-unit increase 0.62; 95%CI 0.40, 0.95) and EPA+DHA
(HR per log-unit increase 0.54; 95%CI 0.30, 0.99) (Sup-
plementary Table S4).
Similar results were obtained when CVD mortality was

defined as an outcome (Additional file 1, Supplementary
Table S5). While the dietary biomarker-MDS was

inversely associated with CVD mortality in the fully ad-
justed model (HRT3vs.T1 0.60; 95%CI 0.38, 0.93), the
FFQ-MDS was not (HRT3vs.T1 1.05; 95%CI 0.64, 1.72,
Fig. 2). Likewise, the dietary biomarker-MDS showed a
statistically significant linear association with CVD mor-
tality (HR per unit increase 0.93; 95%CI 0.87, 0.99),
while the FFQ-MDS did not (HR per unit increase 0.99;
95%CI 0.94, 1.07) (Additional file 1, Supplementary
Table S5). Among the individual components of the
dietary biomarker-MDS, baseline total plasma caroten-
oid concentrations were significantly associated with
CVD mortality (HRT3vs.T1 0.60; 95%CI 0.39, 0.93), while
linolenic acid showed an inverse marginal association
(p=0.064, Fig. 2, and Additional file 1, Supplementary
Table S5). Linear inverse associations with CVD mortal-
ity were observed for linolenic acid (HR per log-unit

Fig. 1 Flowchart of participants of the study
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increase 0.31; 95%CI 0.15, 0.66), selenium (HR per log-
unit increase 0.09; 95%CI 0.01, 0.76), and SFA (HR per
log-unit increase 0.17; 95%CI 0.03, 0.96) (Additional file
1, Supplementary Table S5). No significant association
was observed between either any MDS or dietary bio-
marker individual component and cancer mortality (all
p>0.05, Fig. 2, and Additional file 1, Supplementary
Table S6).
Interactions between age, sex, BMI, smoking status,

HT, CVD, diabetes mellitus, cancer, and both the FFQ-
MDS and the dietary biomarker-MDS in relation to all-
cause, CVD, or cancer mortality were mostly not signifi-
cant. There was a significant interaction between FFQ-
MDS and COPD (p=0.017) by which its association with
all-cause mortality was only significant in patients with
COPD (n 53, deaths 40; HRT3vs.T1 FFQ-MDS 0.24;
95%CI 0.06, 0.93). On the other hand, a significant inter-
action was noticed between the dietary biomarker-MDS
and impaired renal function for its association with all

cause-mortality (p for interaction=0.031). The associ-
ation between the dietary biomarker-MDS and all-cause
mortality remained significant only among the partici-
pants without impaired renal function at baseline (n 390,
deaths 226; HRT3vs.T1 dietary biomarker-MDS 0.56;
95%CI 0.39, 0.80). In those with impaired renal function,
this association was not statistically significant (n 253,
deaths 212; HRT3vs.T1 dietary biomarker-MDS 0.94;
95%CI 0.67, 1.33). For CVD mortality, the only statisti-
cally significant interaction detected was between dietary
biomarker-MDS and BMI (p=0.022). The inverse associ-
ation between dietary biomarker-MDS and CVD mortal-
ity was stronger among participants with BMI>30 kg/m2

(n 161, CVD deaths 36; HRT3vs.T1 dietary biomarker-
MDS 0.28; 95%CI 0.09, 0.90).
The inverse associations between dietary biomarker-

MDS and all-cause and CVD mortality were confirmed
in the sensitivity analyses after exclusion of participants
who died in the first 2 years of follow-up (HRT3vs.T1

Table 2 Baseline characteristics of the study population by dietary biomarker-MDS and FFQ-MDS tertiles

Characteristics All
(n=642)

Dietary biomarker-MDS P* FFQ-MDS P*

Tertile 1
(n=251)

Tertile 2
(n=193)

Tertile 3
(n=198)

Tertile 1 (n=191) Tertile 2 (n=265) Tertile 3 (n=186)

Age at baseline (years) a 74 (7) 75 (7) 75 (7) 73 (6) 0.013 76 (7) 75 (7) 72 (5) <0.001

Female sex (n,%) 357 (56) 145 (58) 105 (54) 107 (54) 0.82 130 (68) 155 (58) 72 (39) <0.001

BMI (kg/m2) a 27.4 (3.9) 27.4 (4.3) 27.9 (3.7) 27.0 (3.4) 0.19 27.4 (4.3) 27.4 (3.7) 27.6 (3.6) 0.67

Education (years) a 5.4 (3.3) 5.1 (2.6) 5.6 (3.6) 5.7 (3.6) 0.19 5.1 (3.1) 5.3 (3.2) 6.0 (3.4) 0.58

Smoking (n,%) 0.001 0.12

Never 382 (60) 1147 (59) 115 (60) 120 (61) 122 (64) 167 (63) 93 (50)

Former 174 (27) 58 (23) 54 (28) 62 (31) 44 (23) 65 (25) 65 (35)

Current 86 (13) 46 (18) 24 (12) 16 (8) 25 (13) 33 (12) 28 (15)

Physical activity
(n, %)

0.034 0.044

Sedentary 110 (17) 52 (21) 437 (19) 21 (11) 49 (26) 44 (17) 17 (9)

Light 281 (44) 115 (46) 78 (40) 88 (44) 87 (46) 117 (44) 77 (41)

Moderate-High 251 (39) 84 (33) 78 (40) 89 (45) 55 (29) 104 (39) 92 (49)

Energy intake (kcal/day) a 1928 (543) 1833 (511) 1979 (546) 1998 (564) 0.003 1751 (539) 1905 (515) 2141 (515) <0.001

HT (n,%) 402 (63) 157 (62) 124 (64) 121 (61) 0.96 131 (66) 165 (62) 106 (56) 0.19

IRF (n,%) 253 (39) 104 (41) 71 (37) 78 (39) 0.31 92 (48) 116 (44) 45 (24) 0.16

DM (n,%) 89 (14) 44 (18) 24 (12) 21 (11) 0.023 29 (15) 39 (15) 21 (11) 0.38

COPD (n,%) 49 (8) 24 (10) 14 (7) 11 (6) 0.05 15 (8) 18 (7) 16 (9) 0.25

CVD (n,%) 147 (23) 66 (26) 45 (23) 36 (18) 0.06 44 (23) 63 (24) 40 (22) 0.76

Cancer (n,%) 39 (6) 19 (8) 9 (5) 11 (6) 0.44 13 (7) 18 (7) 8 (4) 0.55

Dementia (n,%) 24 (4) 12 (5) 8 (4) 4 (2) 0.22 10 (5) 8 (3) 6 (3) 0.52

Parkinson’s disease
(n, %)

5 (0.8) 1 (0.4) 1 (0.5) 3 (1.5) 0.24 - 3 (1.1) 2 (1.0) 0.93

BMI body mass index, IRF impaired renal function, DM diabetes mellitus, COPD chronic obstructive pulmonary disease, HT hypertension, CVD cardiovascular
disease. Cut-offs for FFQ-MDS tertiles were ≤7, 8–10, and ≥11; and for dietary biomarker-MDS tertiles: ≤8, 9–10, and ≥11. These cutoffs were chosen to achieve 3
categories with a similar number of participants in each group
*p values calculated using generalized linear models adjusted for age and sex
aData reported as mean (SD)
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dietary biomarker-MDS 0.71; 95%CI 0.55, 0.90; and
HRT3vs.T1 dietary biomarker-MDS 0.59; 95%CI 0.37,
0.94; for all-cause and CVD mortality, respectively). Fur-
ther sensitivity analyses after the exclusion of partici-
pants using dietary supplements (3.3%, n=21) and lipid-
lowering medications (3.9%, n=25) were computed and
the results remained similar.
In addition, we further adjusted the Cox regression

models for a genetic score (including APOE ε4,
among other SNPs) and a parental longevity score to
account for genetically predisposed mortality risk. In
these models, the association between dietary
biomarker-MDS and all-cause mortality was HRT3vs.T1

0.70; 95%CI 0.54, 0.90, and between the dietary
biomarker-MDS and CVD mortality was HRT3vs.T1

0.57; 95%CI 0.35, 0.91.

The intraclass correlation coefficient (ICC) of the
FFQ-MDS between follow-ups (0, 3, 6, and 9 years) was
0.49 (95% CI 0.44, 0.52). A statistically significant differ-
ence of the FFQ-MDS between the baseline and the 9-
year examination (β 0.26; 95%CI 0.20, 0.50) was ob-
served, but not among the other follow-up times. After
including data from all follow-up dietary assessments in
the analysis, we observed a significant association be-
tween the FFQ-MDS and all-cause mortality in the base
model [HRT3vs.T1 0.77; 95%CI 0.60, 0.99), but not in the
fully adjusted model (HRT3vs.T1 0.81; 95%CI 0.63, 1.04).
The FFQ-MDS, including the repeated measures, was in-
versely associated with CVD mortality in both the base
(HRT3vs.T1 0.59; 95%CI 0.37, 0.93) and the fully adjusted
models (HRT3vs.T1 0.62; 95%CI 0.39, 0.99). For cancer
mortality, no significant associations were observed with
any model.

Discussion
In the present study, a baseline dietary biomarker score
based on key MD food groups but not a MDS based on
the FFQ was inversely associated with long-term all-
cause and CVD mortality in a cohort of older adults
(median follow-up 14 years). These findings strongly
suggest that a panel of dietary biomarkers may provide a
more objective and accurate assessment of the health
benefits associated with diet quality in older adults than
self-reported questionnaires. This dietary biomarker
panel can be used in both epidemiological and clinical
research to further investigate the relationships between
the adherence to MD and health outcomes.
Our results showing a non-significant association be-

tween FFQ-MDS and all-cause mortality somewhat con-
trast with previous findings from the EPIC [8], MOLI-
SANI [7], and healthy aging: a longitudinal study in Eur-
ope (HALE) [47] and Women’s Health Initiative (WHI)
[48] studies. These differences could be due to the older
mean age of our population, the lower number of partic-
ipants included, the longer follow-up [14years vs.
8.1years (in the EPIC and MOLI-SANI studies)], the
higher proportion of deaths [68% vs. 10–17% (in the
EPIC and MOLI-SANI)], differences on dietary back-
grounds when comparing studies from the Mediterra-
nean vs. non-Mediterranean regions, or on the relatively
higher presence of chronic conditions like CVD at base-
line, among other factors. Older age might affect the
ability to report food intake using FFQ, which depends
on memory, and this could hamper the accurate estima-
tion of the associations between dietary intakes and
health outcomes [49]. Moreover, dietary intakes can
change over time, and therefore, the association between
FFQ-MDS, measured at baseline, and long-term mortal-
ity could be inaccurate. However, the intraclass correl-
ation coefficient of FFQ-MDS was acceptable across the

Fig. 2 Association between FFQ- and dietary biomarker-MDS and
individual dietary biomarkers (as tertiles), and all-cause, CVD, and
cancer mortality in the InCHIANTI Study. Cox regression model
included sex, age, BMI, education, smoking status, physical activity,
impaired renal function, diabetes mellitus, chronic obstructive
pulmonary disease, hypertension, cardiovascular disease, cancer,
dementia, Parkinson’s disease, and energy intake. FFQ food
frequency questionnaire, dBMK dietary biomarker, EPA
eicosapentaenoic acid, DHA docosahexaenoic acid, MUFA
monounsaturated fatty acids, SFA saturated fatty acids. The total
number of deaths, 435; CVD deaths, 139; cancer deaths, 85.
Resveratrol was categorized into two groups: moderate vs. no or
high consumers.
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consecutive examinations (0.49). Moreover, although the
participants were older over the consecutive interviews,
we observed minor differences in the adherence to FFQ-
MDS, which was only statistically significant when com-
paring the first and the last evaluation. The consider-
ation of data from the dietary assessments of the follow-
ups showed similar results for overall mortality; but for
CVD mortality, including the dietary data from the
follow-ups did show a statistically significant inverse as-
sociation between FFQ-MDS and CVD mortality.
Recently, two metabolomics studies discovered a

plasma metabolite panel based on the MD adherence in-
cluding more than 60 metabolites of which > 60% were
lipids (such as phospholipids, glycerolipids, carnitines,
and acylcarnitines) [20, 50]. Both studies used an a pos-
teriori approach to explore metabolite fingerprints,
which were significantly correlated with the MDS adher-
ence from dietary questionnaires. In the present study,
we included metabolites derived from the dietary
sources, i.e., total polyphenols, resveratrol, or caroten-
oids, which were not considered in the abovementioned
metabolomics analyses. In the study of Li et al. [20],
fruits and legumes were only slightly correlated with 7
out of the 67 metabolites that constituted the total score.
Therefore, these metabolites may track the biological
changes induced by a MD (biomarkers of effect) but
may not correlate with the intake of certain major food
groups of the MD. Indeed, in both metabolomics stud-
ies, high correlations with the intake of fish and seafood,
and olive oil were expected, as they were mostly based
on lipid metabolites [20, 50]. Future studies with a more
comprehensive metabolomic analysis combining en-
dogenous and exogenous metabolites are still warranted.
We expect that the inclusion of more dietary biomarkers
with higher specificity would improve the assessment of
MD adherence and would reflect better its potential
health benefits [51]. In our score, total polyphenols, sel-
enium, linolenic acid, and carotenoids were grouped as
dietary biomarkers of vegetables, fruits and nuts, le-
gumes and cereals altogether because these dietary bio-
markers are present at different concentrations across
these highly-heterogenous food groups and one-to-one
relationships can not be established. The analysis of in-
teractions allowed us to detect that impaired renal func-
tion affected the association between the dietary
biomarker-MDS and all-cause mortality, probably
through its influence in the excretion of urinary dietary
biomarkers. Further studies are needed to develop more
robust adherence scores from dietary biomarker concen-
trations that may not be affected by impaired renal
function.
The present findings on dietary biomarker-MDS are in

accordance with previous InCHIANTI results showing
that PUFA and total polyphenols inverse associations

with overall mortality were only significant using dietary
biomarkers but not using dietary questionnaires [13, 14].
Moreover, the metabolite score developed by Li et al.
[20] was associated with CVD events independently of
the MDS based on the FFQ. The explanation of why
dietary biomarker-MDS was significantly associated with
all-cause mortality, while the FFQ-MDS was not, might
be related to the ability of dietary biomarkers to better
address the complex diet-health relationship [51]. Fur-
thermore, a dietary biomarker may better capture dietary
exposure accounting for interindividual variations in dif-
ferent age-related changes.
The main strengths of this study is its longitudinal de-

sign, long follow-up, and the use of dietary biomarkers
that reduce the potential dietary assessment errors of
FFQ-based data. We also included repeated measures of
the FFQ-MDS in the analysis as older adults are suscep-
tible to change their dietary habits due to various condi-
tions influenced by physiologic, pathologic, and/or
psychologic factors [52]. In addition, we used a genetic
score and a parental longevity score to better understand
the predisposed mortality risks. Last, we used one of the
common definitions of MDS [10], facilitating the com-
parison with results from other studies [53]. However,
this investigation also has some limitations. Firstly, we
only had baseline measurements of the dietary bio-
markers, and their stability over time in this cohort is
uncertain. However, in other longitudinal studies dietary
biomarkers like plasma carotenoids, total SFA, MUFA
and PUFA were reported to be stable, with an intraclass
correlation coefficient ranging between 0.50–0.68 over 3
to 15 years apart [54–56]. Taking into consideration that
FFQ-MDS slightly changed across follow-ups, we may
assume similar changes for the dietary biomarker MDS.
Secondly, there are more specific dietary biomarkers for
some MD food groups as described in the literature [16,
18, 57–59], but they were not available in our cohort. In
the present study, the panel of dietary biomarkers was
selected based on a literature search and an a posteriori
validation through correlation analyses. However, the ex-
istence of multiple food sources affecting the levels of
these dietary biomarkers may have reduced the specifi-
city of the present score for the Mediterranean diet. In-
deed, the correlation coefficient and level of agreement
between the FFQ- and dietary biomarker-MDS was low.
Thirdly, although we adjusted our model by several po-
tential confounders, residual confounding cannot be
ruled out. Last, our results require confirmation in other
populations from different geographical regions.

Conclusions
Adherence to MD assessed by a dietary biomarker panel
based on key MD food groups, but not using a trad-
itional FFQ, was inversely associated with long-term
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mortality in older adults. The linear dose-response be-
tween the dietary biomarker-MDS and mortality further
supports its use in long follow-up evaluations to monitor
the potential health benefits associated with MD. Finally,
we would like to highlight the use of dietary biomarkers
to improve nutritional assessment and to guide individu-
alized dietary counseling to older people.
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